

Prospective evaluation of cell-free DNA fragmentomes for lung cancer detection

Peter J. Mazzone,¹ Kwok-Kin Wong,² Jun-Chieh J. Tsay,² Harvey I. Pass,² Anil Vachani,³ Allison Ryan,⁴ Jacob Carey,⁴ Debbie Jakubowski,⁴ Tony Wu,⁴ Yuhua Zong,⁴ Carter Portwood,⁴ Keith Lumbard,⁴ Joseph Catallini,⁴ Nicholas C. Dracopoli,⁴ Peter B. Bach,⁴ Robert B. Scharpf,⁵ <u>Victor E. Velculescu</u>⁵

¹Cleveland Clinic, Cleveland, OH; ²NYU Langone Health, New York, NY; ³University of Pennsylvania School of Medicine, Philadelphia, PA; ⁴Delfi Diagnostics, Inc., Baltimore, MD; ⁵The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD

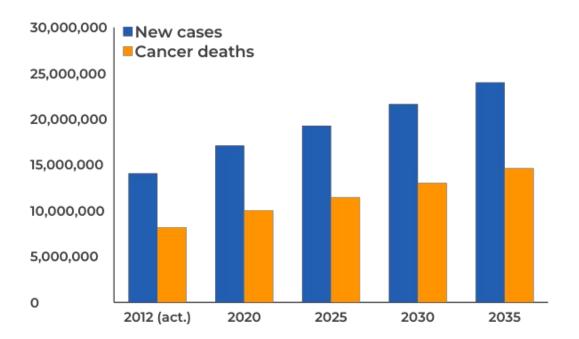
APRIL 14-19 • #AACR23

Founder and Officer of Delfi Diagnostics

Founder of Personal Genome Diagnostics (acquired by LabCorp in 2022)

Scientific Advisory Board of Epitope and Viron Therapeutics.

Dr. Velculescu is an inventor on patent applications submitted by Johns Hopkins University related to cancer genomic analyses and cell-free DNA for cancer detection that have been licensed to one or more entities, including Delfi Diagnostics, LabCorp, Qiagen, Sysmex, Agios, Genzyme, Esoterix, Ventana and ManaT Bio. Under the terms of these license agreements, the University and inventors are entitled to fees and royalty distributions. These arrangements have been reviewed and approved by the Johns Hopkins University in accordance with its conflict-of-interest policies.


Non-FDA Approved Use of Drugs or Products Referenced in this Presentation - NONE

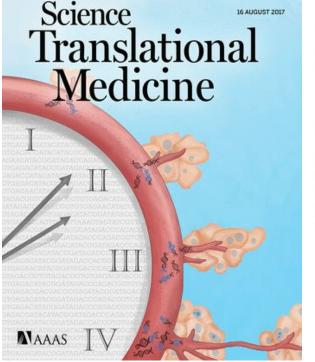
One of the greatest achievements in public health in our lifetimes will be through early cancer detection

APRIL 14-19 • #AACR23

World Cancer Projections

Cancer rates continue to rise world-wide

Largest potential strides against cancer are in early detection


For screening to work it must find early-stage disease as this has greatest impact on mortality

For screening to work it has to be a public health effort that is widely accessible at population scale price

Mutations in cfDNA provide an avenue for noninvasive cancer detection

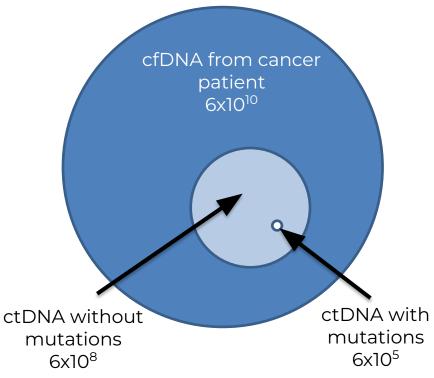
APRIL 14-19 • #AACR23

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

CANCER

Direct detection of early-stage cancers using circulating tumor DNA

Jillian Phallen,¹ Mark Sausen,² Vilmos Adleff,¹ Alessandro Leal,¹ Carolyn Hruban,¹ James White,¹ Valsamo Anagnostou,¹ Jacob Fiksel,¹ Stephen Cristiano,¹ Eniko Papp,¹* Savannah Speir,¹ Thomas Reinert,³ Mai-Britt Worm Orntoft,³ Brian D. Woodward,⁴ Derek Murphy,² Sonya Parpart-Li,² David Riley,² Monica Nesselbush,² Naomi Sengamalay,² Andrew Georgiadis,² Qing Kay Li,¹ Mogens Rørbæk Madsen,⁵ Frank Viborg Mortensen,⁶ Joost Huiskens,^{7,8} Cornelis Punt,⁸ Nicole van Grieken,⁹ Remond Fijneman,¹⁰ Gerrit Meijer,¹⁰ Hatim Husain,⁴ Robert B. Scharpf,¹ Luis A. Diaz Jr.,^{1†} Siân Jones,² Sam Angiuoli,² Torben Ørntoft,³ Hans Jørgen Nielsen,¹¹ Claus Lindbjerg Andersen,³ Victor E. Velculescu^{1‡}


First systematic analysis of sequence alterations in cfDNA for direct detection of early-stage cancers

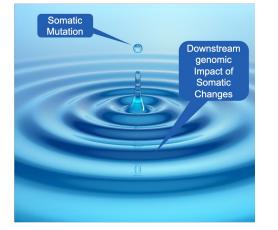
But targeted cfDNA changes have limited signal and may not be suitable for population screening

APRIL 14-19 • #AACR23

Estimated number of 150bp fragments in 10ng cfDNA

Approaches using targeted detection of mutations or methylation only detect a tiny fraction of ctDNA

Miss many cancers, especially early stage

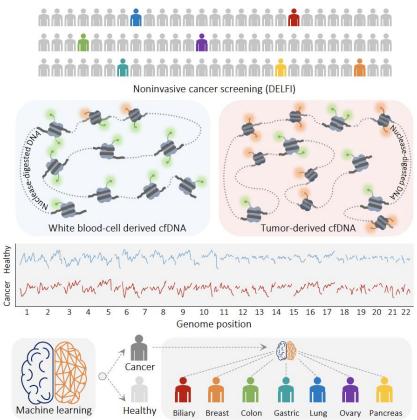

cfDNA mutations occur in normal blood cells, confounding analyses

Deep sequencing makes these methods too expensive for broad screening

APRIL 14-19 • #AACR23

Genome-wide cell-free DNA fragmentation in patients with cancer

Stephen Cristiano^{1,2,15}, Alessandro Leal^{1,15}, Jillian Phallen^{1,15}, Jacob Fiksel^{1,2,15}, Vilmos Adleff¹, Daniel C. Bruhm¹, Sarah Østrup Jensen³, Jamie E. Medina¹, Carolyn Hruban¹, James R. White¹, Doreen N. Palsgrove¹, Noushin Niknafs¹, Valsamo Anagnostou¹, Patrick Forde¹, Jarushka Naidoo¹, Kristen Marrone¹, Julie Brahmer¹, Brian D. Woodward⁴, Hatim Husain⁴, Karlijn L. van Rooijen⁵, Mai-Britt Worm Ørntoft³, Anders Husted Madsen⁶, Cornelis J. H. van de Velde⁷, Marcel Verheij⁸, Annemieke Cats⁹, Cornelis J. A. Punt¹⁰, Geraldine R. Vink⁵, Nicole C. T. van Grieken¹¹, Miriam Koopman⁵, Remond J. A. Fijneman¹², Julia S. Johansen¹³, Hans Jørgen Nielsen¹⁴, Gerrit A. Meijer¹², Claus Lindbjerg Andersen³, Robert B. Scharpf^{1,2}* & Victor E. Velculescu¹*


DELFI: DNA evaluation of fragments for early interception

Collaborative and interdisciplinary effort involving cancer genomics, biostatistics, computational biology, oncology, pathology from JHU School of Medicine and School of Public Health as well as national and international collaborators

DELFI Approach for Detection of ctDNA using Genome-Wide Fragmentation Profiles

APRIL 14-19 • #AACR23

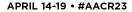
Cristiano S, et al. Nature. 2019;570(7761):385-389.

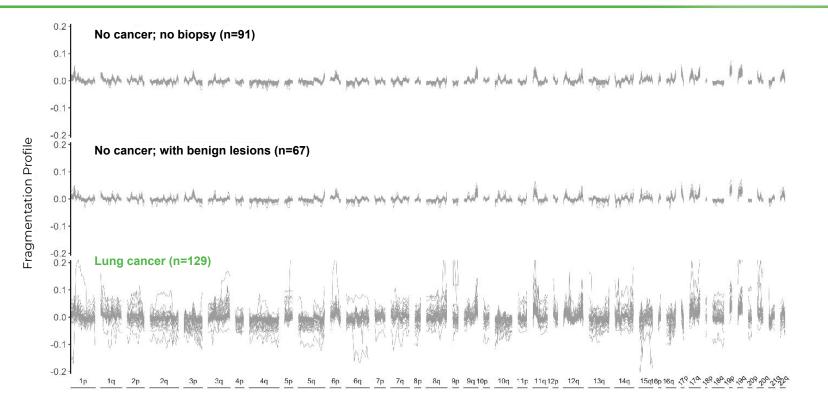
APRIL 14-19 • #AACR23

cfDNA Fragmentome: The

genome-wide compendium of cfDNA fragments in the circulation, providing an integrated view of the chromatin, genome, and transcriptome states of normal and cancer cells of an individual

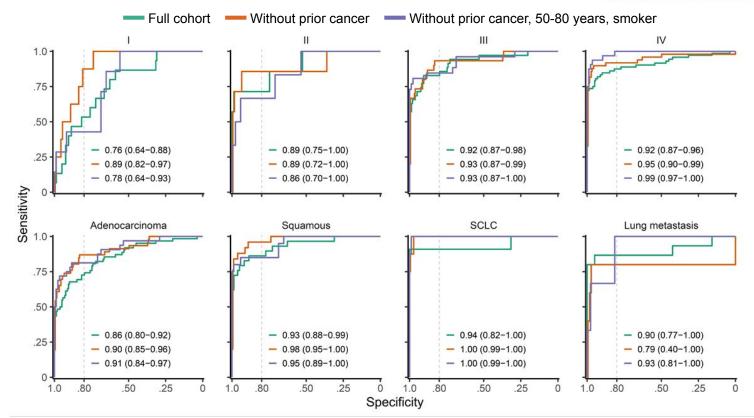
Multi-Cancer Early Detection: DELFI Is Highly Sensitive and Specific for Detection of Cancer and Tissue of Origin


APRIL 14-19 • #AACR23


			Sensitivity		Tissue of Origin	
Cancer Type	Individuals analyzed	95% specificity	98% specificity	-	Individuals analyzed	Top 2 Predictions
Lung	12	100%	100%		30	77%
la Ovarian	28	89%	89%		27	59%
Bile duct	26	88%	81%	i	23	65%
Gastric	27	81%	81%		24	79%
Colorectal	27	81%	80%		24	79%
A Pancreatic	34	71%	65%		24	67%
Breast	54	70%	57%	Å	42	91%
Healthy	215		<u></u>	Total	194	75%

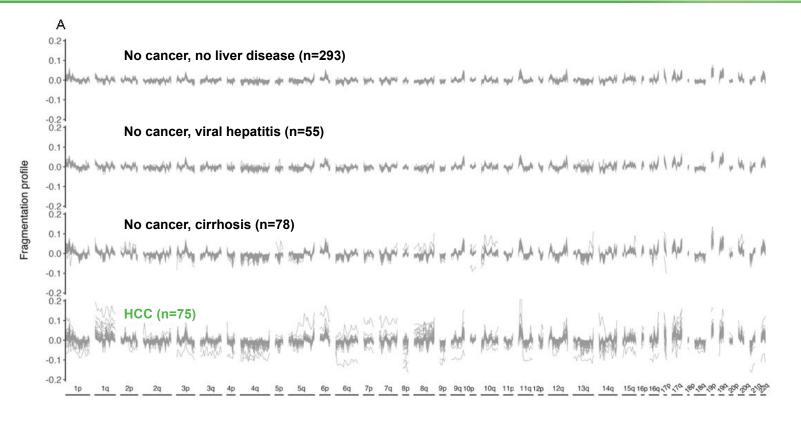
Cristiano S, et al. Nature. 2019;570(7761):385-389.

DELFI Detects cfDNA Fragmentomes Altered in Lung Cancer and Is Not Fooled by Benign Lesions



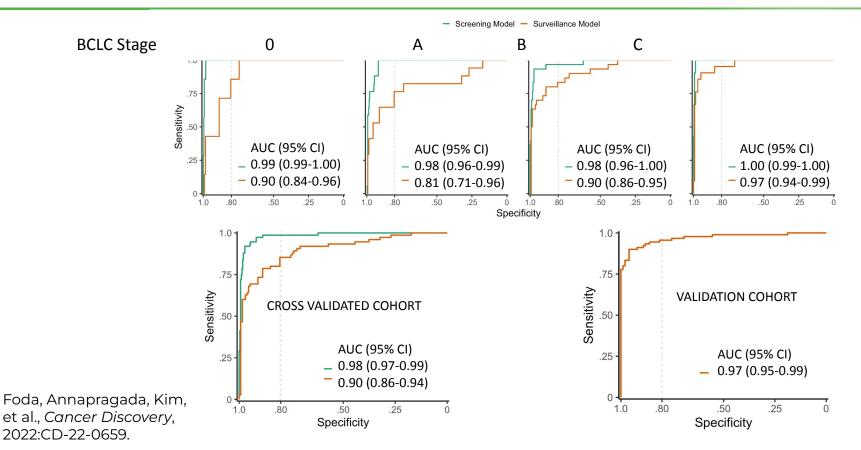
Mathios D, et al. Nature Communications, 2021;12(1):5060.

DELFI has high sensitivity and specificity for detection of lung cancer in prospective cohort



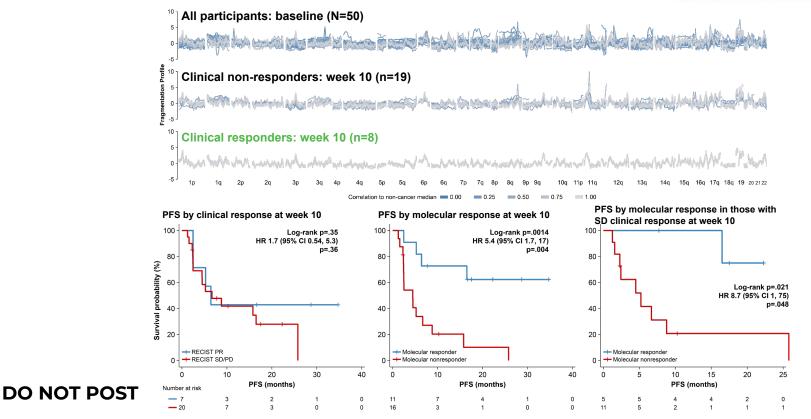
Mathios D, et al. Nature Communications, 2021;12(1):5060.

DELFI Detects cfDNA Fragmentomes Altered in Liver Cancer and Is Not Affected by Liver Disease


APRIL 14-19 • #AACR23

Foda, Annapragada, Kim, et al., Cancer Discovery, 2022:CD-22-0659.

DELFI has high sensitivity and specificity for detection of liver cancer



DELFI for Monitoring Therapeutic Response to Immune Checkpoint Inhibition in Advanced Solid Tumors

APRIL 14-19 • #AACR23

Medina J, et al. ESMO 2022 - In Collaboration with Evanthia Roussos-Torres, Roisin Connolly and Liz Jaffee (NCT02453620)

Cell-free DNA Fragmentation Profiling for Monitoring Therapeutic Response in Metastatic Colorectal Cancer

Bahar Alipanahi,¹ Iris van 't Erve,² Keith Lumbard,¹ Laurel K. Millberg,¹ Zachary L. Skidmore,¹ Lorenzo Rinaldi,¹ Jacob Carey,¹ Jennifer Tom,¹ Cornelis J. A. Punt,³ Nicholas C. Dracopoli,¹ Gerrit A. Meijer,² Robert B. Scharpf,⁴ Victor E. Velculescu,⁴ Remond J.A. Fijneman,² Alessandro Leal ¹

1.Delfi Diagnostics, Inc., Baltimore, MD, United States

2.Department of Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands.

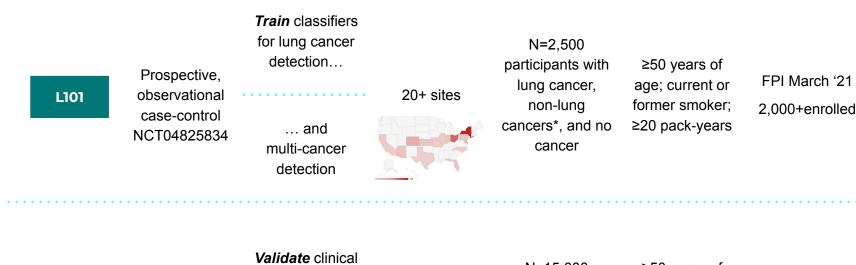
3. Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands.

4. The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States

Increasing Stages of Rigor From Scientific Discovery to Validated Diagnostic Product

APRIL 14-19 • #AACR23

Objective of Phase/Stage	Explore and identify potential product ideas	Define and evaluate product idea	Determine if prode idea is technicall feasible and marketable	• • •	Validate that the product meets defined user needs & intended uses	Confirm product is ready for commercialization and launch product
Tech	Research Conce	pt Feasi	bility and Planning C	Development	Analytical and Clinical Validation	Launch and Post-Market improvements
Clinical Evidence	Retrospective and Proof of concept	Case Control	Studies for Training / Earl	ly Clinical Validation Studies		Clinical Utility and Real-World Evidence
			Intended Pop	ulation Clinical Validation Studies		
Regulatory	FDA Breakthrough Appl (if applicable)	ication	FDA Pre-Market Authorize	ation Application development		Approval and FDA post-market studies


Delfi Diagnostics: spinout from JHU to develop clinically useful and widely accessible screening products based on DELFI technology

Courtesy of Jennifer Beuchel, 2023

Prospective National Clinical Trials to Validate DELFI Technology for Detection of Lung and Other Cancers

APRIL 14-19 • #AACR23

Prospective observational cohort NCT05306288 Validate clinical performance of the DELFI lung cancer screening

40+ sites

N≈15,000 participants undergoing LDCT screening ≥50 years of age; current or former smoker; ≥20 pack-years

FPI April '22

* bladder, colorectal, esophageal, gastric, head and neck, kidney, liver, and pancreatic

L101 Prospective Trial: Participant Demographics and Clinical Characteristics

APRIL 14-19 • #AACR23

Characteristic	Lung Cancer, N = 294 ¹	Non-cancer, N = 661
AGE	70 (65, 76)	66 (60, 71)
SEX		
Female	154 (52%)	313 (47%)
Male	140 (48%)	348 (53%)
BMI	26 (23, 31)	28 (25, 33)
SMOKING HISTORY		
Current	76 (26%)	267 (40%)
Former	193 (66%)	391 (59%)
Never	25 (8.5%)	3 (0.5%)
RACE		
Asian	12 (4.1%)	8 (1.2%)
Black or African American	23 (7.8%)	54 (8.2%)
Not Reported/Missing	14 (4.8%)	33 (5.0%)
Other	2 (0.7%)	9 (1.4%)
White	243 (83%)	557 (84%)
¹ Median (IQR); n (%)		

Characteristic	N = 294 ¹
LUNG CANCER STAGE	
I	147 (50%)
П	40 (14%)
III	65 (22%)
IV	39 (13%)
Unknown Lung Cancer Stage	3 (1.0%)
LUNG CANCER HISTOLOGY	
Adenocarcinoma	177 (60%)
Other	26 (8.8%)
Small cell carcinoma (SCLC)	21 (7.1%)
Squamous cell carcinoma (SCC)	70 (24%)
¹ n (%)	

Lung Cancer Characteristics

DO NOT POST

m = 1 - 1

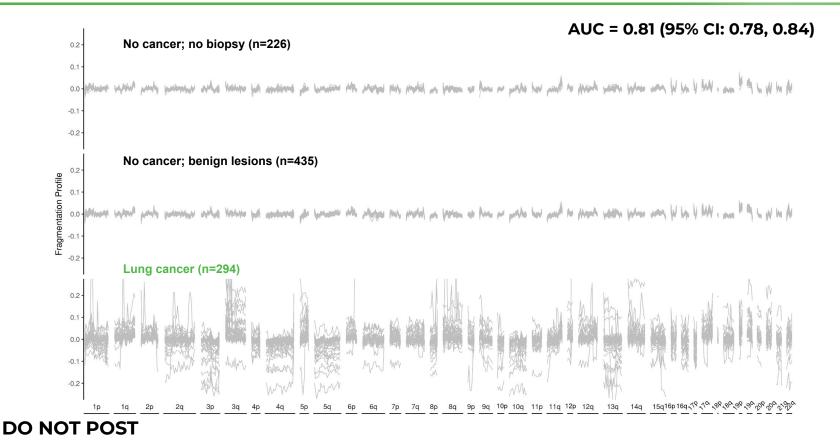
APRIL 14-19 • #AACR23

0.2	No cancer; former smoking history (n=391)
0.1	
0.0	policies when while he were while here we are an and a first of the fi
-0.1	
-0.2	
elije 0.2	No cancer; current smoking history (n=267)
0.1 ·	The second set of the base of the second
Eragmentation Profile	policing when prove when when when but answers per bound into probably on probably on the second probably the
Erag	

DO NOT POST

L101 Prospective Trial: Fragmentome profiles are not affected by sex

L101 Prospective Trial: Fragmentome profiles are not affected by BMI


L101 Prospective Trial: Fragmentome profiles are not affected by benign lesions

	0.2 -	P-value = 0.40 No cancer; no biopsy (n=226)
	0.1 -	
	0.0-	power which we want which here we are a line on the more the power or from a power of him with here we were the war of his with here and the here an
	0.1 -	
-	0.2 -	
file	0.2 -	No cancer; benign lesions (n=435)
n Pro	0.1 -	
ntation	0.0 -	power would be here when whe would be to be and the population of
Fragmentation Profile	0.1 -	
Era	0.2 -	

DELFI Cross-validated Classifier Distinguishes Lung Cancer With High Performance in L101

- Genome-wide cfDNA fragmentome features detect cancer with high sensitivity, including in early-stage disease.
- Fragmentation profiles capture genomic and chromatin characteristics, including alterations known to be important in cancer.
- The high performance of cfDNA fragmentome analyses for cancer detection, along with its cost-efficient characteristics, could overcome the limitations of current cancer screens.

Acknowledgments

APRIL 14-19 • #AACR23

The generous participants in this study Our investigator colleagues:

- Peter Mazzone
- Kenneth Wei
- Kyle Work
- Georges Azzi
- Ali Zaidi
- Jeffery Kern
- Dennis Wigle
- Nafisa Burhani
- Swati Sikaria
- Minch Fong
- Jeffrey Thompson
- Sandra Starnes

- Kathryn Lloyd
- Nima Nabavizadeh
- David Gierada
- Gerard Silvestri
- Suhail Raoof
- Lecia Sequist
- Manmeet Ahluwalia
- Robert Orr
- Maria Quejada
- Nichole Tanner
- Michael Bernstein
- Bavish Parekh

Acknowledgements

Johns Hopkins Kimmel Cancer Center

Vilmos Adleff Valsamo Anagnostou Akshaya Annapragada Kavya Boyapati Daniel Bruhm Stephen Cristiano **Jacob** Fiksel Zach Foda Dorothy Hallberg Carlie Hruban **Rachel Karchin Dimitris Mathios** Jamie Medina Noushin Niknafs Michael Noe Doreen Palsgrove Jill Phallen Eniko Papp **Rob Scharpf** Nick Vulpescu James White

JHU School of Public Health

Jing Sun Shruti H. Meta David L. Thomas Gregory D. Kirk

Johns Hopkins Kimmel Cancer Center

Bob Anders Steve Baylin Chetan Bettegowda Julie Brahmer Jim Eshleman Patrick Forde Ed Gabrielson Mike Goaains **Christine Hann** Ralph Hruban Peter Illei Elizabeth Jaffee Amy Kim **Oing Kay Li** Kristen Marrone Drew Pardoll **Kellie Smith** David Sidransky Vered Stearns Suzanne Topalian Laura Wood

> MSKCC Luis Diaz

UCSD Hatim Husain UCLA Dennis Slamon Gottfried Konecny Beth Karlan Leah Marsh Jenny Lester

University of Pennsylvania

Ronny Drapkin Susan Domchek

Aarhus University

Claus Lindbjerg Andersen Anders Husted Madsen Mogens Rørbæk Madsen Frank Viborg Mortensen Sarah Østrup Jensen Mai-Britt Worm Ørntoft Torben Ørntoft Thomas Reinert

Hvidovre Hospital University of Copenhagen Stig E. Bojesen Astrid Johansen

Jakob Johansen Julia Johansen Klaus R. Larsen Anders Husted Madsen Hans Jørgen Nielsen

NKI, AMC, MUMC and VUMC

Remond Fijneman Joost Huiskens Karlijn Hummelink Anna Koch Miriam Koopman Dave van der Kruijssen Pien I of Christianne Lok Gerrit Meijer Kim Monkhorst Cornelis Punt Daan van den Broek Manon van Engeland Iris van 't Erve Nicole van Grieken Karlijn L. van Rooijen Geraldine Vink

Delfi Diagnostics

Peter Bach Jenn Buechel Jacob Carey Nic Dracopoli Laurel Keefer Alessandro Leal Keith Lumbard Tara Maddala Allison Ryan