

Leveraging the cfDNA fragmentome to predict immunotherapy response

Valsamo (Elsa) Anagnostou, MD, PhD

Associate Professor

Co-director, Upper Aerodigestive Malignancies Program

Leader, Precision Oncology Analytics, Molecular Tumor Board

& Lung Cancer Precision Medicine Center of Excellence

Director, Thoracic Oncology Biorepository

Johns Hopkins School of Medicine, Baltimore, MD

APRIL 25-30 | AACR.ORG/AACR2025 | #AACR25

Valsamo Anagnostou

I have the following relevant financial relationships to disclose:

Consultant for: Astra Zeneca, Neogenomics

Grant/Research support (active, to institution): Astra Zeneca, Personal Genome Diagnostics/Labcorp

Honoraria from: Foundation Medicine, Personal Genome Diagnostics/Labcorp, Guardant Health

- and -

My additional financial relationship disclosures are:

I am an inventor on patent applications (63/276,525, 17/779,936, 16/312,152, 16/341,862, 17/047,006 and 17/598,690) submitted by Johns Hopkins University related to cancer genomic analyses, ctDNA therapeutic response monitoring and immunogenomic features of response to immunotherapy that have been licensed to one or more entities. Under the terms of these license agreements, the University and inventors are entitled to fees and royalty distributions.

Opportunities and challenges with ctDNA response as an early endpoint for immunotherapy

APRIL 25-30 | AACR.ORG/AACR2025 | #AACR25

Mutation-based ctDNA molecular response predicts immunotherapy outcomes

APRIL 25-30 | AACR.ORG/AACR2025 | #AACR25

Core Conclusions (BR.36 stage 1)

- Undetectable ctDNA 6 weeks on pembrolizumab provides an early measure of clinical response.
- Molecular responses overall agree with imaging (82% sensitivity).
- Liquid biopsies better predict overall survival.

Clinical sensitivity of mutation-based ctDNA molecular response by magnitude

APRIL 25-30 | AACR.ORG/AACR2025 | #AACR25

DO NOT POST DO NOT POST

Sivapalan et al., under review

Inherent challenges with tumor-agnostic WBC DNA-informed liquid biopsy approaches

APRIL 25-30 | AACR.ORG/AACR2025 | #AACR25

Sivapalan et al., submitted

Johns Hopkins Thoracic Oncology prospective minimally invasive biomarker clinical protocol

APRIL 25-30 | AACR.ORG/AACR2025 | #AACR25

Overview of the experimental approach and bioinformatic analyses

APRIL 25-30 | AACR.ORG/AACR2025 | #AACR25

Concordance between cfDNA fragmentome- and mutation-derived tumor fraction estimates

APRIL 25-30 | AACR.ORG/AACR2025 | #AACR25

DO NOT POST

DO NOT POST

Detectable rate by plasma-only, WBC-informed, tumor-informed and fragmentome approach

APRIL 25-30 | AACR.ORG/AACR2025 | #AACR25

DO NOT POST

DO NOT POST

Differential cfDNA fragmentation patterns by timepoint and molecular response groups

APRIL 25-30 | AACR.ORG/AACR2025 | #AACR25

DO NOT POST

DO NOT POST

Concordance between fragmentome-TF and mutation-based ctDNA response

APRIL 25-30 | AACR.ORG/AACR2025 | #AACR25

DO NOT POST DO NOT POST

Fragmentome-TF more accurately predicts outcomes in mutation-based molecular progressors

APRIL 25-30 | AACR.ORG/AACR2025 | #AACR25

DO NOT POST

DO NOT POST

Landmark fragmentome-TF molecular response predicts progression-free survival

APRIL 25-30 | AACR.ORG/AACR2025 | #AACR25

$Multivariate\ Analysis\ of\ Progression-free\ Survival\ (n=66)$

Variable	Levels	PFS HR (95% CI, p value)	
Molecular_respon:	se mPD	_	
	mR	0.12 (0.05 -0.26, p<0.001)	
Baseline_maxMAF	<1%	-	ф_
	>=1%	1.50 (0.66 -3.43, p=0.338)	□
Sex	Female	=	
	Male	0.80 (0.44 -1.47, p=0.480)	
Smoking_status	Current	-	<u> </u>
	Former	1.29 (0.48 -3.43, p=0.611)	
	Never	1.07 (0.24 -4.73, p=0.931)	, <u> </u>
Histology	Adenocarcinoma	-	<u> </u>
Larg	e cell carcinoma	1.17 (0.10 -13.85, p=0.904)	
NSCLC -NOS		2.54 (0.25 -26.26, p=0.434)	-
Squamous cell carcinoma		0.81 (0.38 -1.73, p=0.583)	⊢
Treatment	Firstline IO	_	
Firs	stline Chemo –IO	0.62 (0.26 -1.49, p=0.284)	
Se	condline onward	2.60 (1.20 -5.65, p=0.016)	⊢
			0.5 1 2 5 10 Hazard ratio (95% CI, log scale)

DO NOT POST

DO NOT POST

Landmark fragmentome-TF molecular response independently predicts overall survival

APRIL 25-30 | AACR.ORG/AACR2025 | #AACR25

Multivariate Analysis of Overall Survival (n=66)

Variable	Levels	OS HR (95% CI, p value)	
Molecular_respo	onse mPD mR	- 0.21 (0.10 -0.46, p<0.001)	·
Baseline_maxM.	AF <1% >=1%	2.17 (0.86 -5.51, p=0.102)	-
Sex	Female Male	- 0.50 (0.22 -1.13, p=0.097)	
Smoking_status	Current Former Never	- 1.48 (0.48 -4.53, p=0.495) 1.71 (0.29 -10.23, p=0.556)	<u> </u>
Histology Adenocarcinoma Large cell carcinoma NSCLC –NOS Squamous cell carcinoma			
	Firstline IO Firstline Chemo –IO Secondline onward	1.13 (0.40 -3.20, p=0.812) 1.85 (0.77 -4.43, p=0.168)	0.5 1 2 5 10 Hazard ratio (95% CI, log scale)

DO NOT POST DO NOT POST

Acknowledgements

Thoracic Oncology

Julie Brahmer

Christine Hann

Ben Levy

Joy Feliciano

Vincent Lam

Joe Murray

Susie Scott

Aliya Pabani

Kristen Marrone

Molecular Oncology Lab @Hopkins Thoracic

Ilias Ziakas

James White

Archana Balan

Asimina Zoitou

M Sherief

Gavin Pereira @ValsamoA

Cancer Genetics & Epigenetics Victor Velculescu

Bioinformatics Rob Scharpf

Cancer Immunology

Drew Pardoll Kellie Smith

Pathology

Peter Illei Janis Taube

Kay Li

Thoracic Surgery

Richard Battafarano **Stephen Yang**

Jinny Ha

Stephen Broderick

Cancer Research Institute

Personal Genome **Diagnostics**

Netherlands Cancer Institute

CCTG and BR.36 investigators

Janet Dancey Cheryl Ho

Penelope Bradbury

Pierre-Olivier Gaudreau

Keyue Ding Egor Avrutin Liting Zhu

ECOG-ACRIN, PRECOG

All Ireland NCI Cancer Consortium

HORG

DELFI Diagnostics Lorenzo Rinaldi **Bryan Chesnick Zack Skidmore**

Bahar Alipanahi

Justin Huang https://anagnostoulab.org

K Karaindrou

Funding Sources: NIH, FDA OCE, Department of Defense, Maryland Department of Health and Mental Hygiene, EA Thoracic ITSC, Johns Hopkins ICTR, Johns Hopkins Catalyst Award, Cancer Research Institute, LUNGevity, V Foundation, Swim Across America, Emerson Collective, The Mark Foundation, The Elsa U. Pardee Foundation, BMS, Astra Zeneca, Delfi Diagnostics, Labcorp